Math 261
Fall 2023
Lecture 7


Class QZ 5
Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}=\frac{2^{3}-8}{2^{2}-4}=\frac{8-8}{4-4}=0$ IF.
Box Your final Ans.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{x^{2}+2 x+4}{x+2} \\
& =\frac{2^{2}+2(2)+4}{2+2}=\frac{4+4+4}{4}=\frac{12}{4}=3
\end{aligned}
$$

Given $f(x)=x^{3}$
Evaluate $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}=\frac{(x+0)^{3}-x^{3}}{0}=\frac{0}{0} \text { I.F. } \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \\
& =3 x^{2}+3 x(0)+0^{2}=3 x^{2}
\end{aligned}
$$

Sep 7-10:29 AM

Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+36}-6}{x^{2}}=\frac{\sqrt{0^{2}+36}-6}{0}=\frac{6-6}{0}=\frac{0}{0}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\left(\sqrt{x^{2}+36}-6\right)\left(\sqrt{x^{2}+36}+6\right)}{x^{2}\left(\sqrt{x^{2}+36}+6\right)} \\
= & \lim _{x \rightarrow 0} \frac{x^{2}+36-36}{x^{2}\left(\sqrt{x^{2}+36}+6\right)}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x^{2}+36}+6}=\frac{1}{\sqrt{0^{2}+36}+6} \\
& =\frac{1}{12}
\end{aligned}
$$



Sep 7-10:39 AM

More limit laws:
4) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x} g(x)} ; \lim _{x \rightarrow a} g(x) \neq 0$ $x \rightarrow a$
Suppose $\lim _{x \rightarrow a} f(x)=5, \lim _{x \rightarrow a} g(x)=-2$
find $\lim _{x \rightarrow a} \frac{f(x) \cdot g(x)}{f(x)-g(x)}=\frac{\lim _{x \rightarrow a}[f(x) \cdot g(x)]}{\lim _{x \rightarrow a}[f(x)-g(x)]}$
$=\frac{\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} f(x)-\lim _{x} g(x)}=\frac{5(-2)}{5-(-2)}=\frac{-10}{7}$

$$
x \rightarrow a \quad x \rightarrow a
$$

More limit laws:
6) $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}, n$ is a pos. integer
7) $\lim _{x \rightarrow a} c=c$

$$
\text { 8) } \lim _{x \rightarrow a} x=a
$$

Suppose $\lim _{x \rightarrow 2} f(x)=10$
find $\lim _{x \rightarrow 2}\left[(f(x))^{2}+x-98\right]=\lim _{x \rightarrow 2}[f(x)]^{2}+\lim _{x \rightarrow 2} x-\lim _{x \rightarrow 2} 98$

$$
\begin{aligned}
& =\left[\lim _{x \rightarrow 2} f(x)\right]^{2}+\lim _{x \rightarrow 2} x-\lim _{x \rightarrow 2} 98 \\
& =10^{2}+2-98=4
\end{aligned}
$$

Sep 7-10:54 AM
9)

$$
\begin{aligned}
& \text { 9) } \lim _{x \rightarrow a} x^{n}=a^{n} \\
& \text { 10) } \lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}
\end{aligned}
$$

$n$ is a pos. integer.
$n$ is a pos. integer If $n$ is even, then $a>0$

Evaluate $\lim _{x \rightarrow-1}\left[x^{3}-\sqrt[3]{x}\right]=\lim _{x \rightarrow-1} x^{3}-\lim _{x \rightarrow-1} \sqrt[3]{x}$

$$
=(-1)^{3}-\sqrt[3]{-1}
$$

$$
=-1+1=
$$

$\square$

Direct Subs.:
If $a$ is in the domain of $f(x)$, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x+2}{x^{3}+8} \quad \text { So } 0 \\
& =\frac{0+2}{x^{3}+8}=\frac{2}{8}=\frac{1}{4}
\end{aligned}
$$

$$
x^{3}+8 \neq 0 \rightarrow x \neq-2
$$

So $O$ is in the domain

Sep 7-11:03 AM

Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{\frac{1}{x}-\frac{1}{4}}{x-4}=\frac{\frac{1}{4}-\frac{1}{4}}{4-4}=\frac{0}{0} \text { I.F. } \\
& =\lim _{x \rightarrow 4} \frac{4 x \cdot \frac{1}{x}-4 x \cdot \frac{1}{4}}{4 x(x-4)}=\lim _{x \rightarrow 4} \frac{4-x}{4 x(x-4)} \\
& =\lim _{x \rightarrow 4} \frac{-1}{4 x}=\frac{-1}{16}
\end{aligned}
$$

Find $\begin{array}{r}\lim _{x \rightarrow 0}\left[\frac{1}{x}-\frac{1}{x^{2}+x}\right] \quad 0 \text { is not in the } \\ \text { domain }\end{array}$

$$
\begin{aligned}
&=\lim _{x \rightarrow 0}\left[\frac{1(x+1)}{x(x+1)}-\frac{1}{x(x+1)}\right] \\
&=\lim _{x \rightarrow 0} \frac{x+1-1}{x(x+1)}=\lim _{x \rightarrow 0} \frac{1}{x+1}=\frac{1}{0+1} \\
&=1
\end{aligned}
$$

The Squeeze Theorem
If $f(x) \leq g(x) \leq h(x)$ when $x$ is near a and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$
then $\lim _{x \rightarrow a} g(x)=L$

$$
\begin{gathered}
-x^{2} \leq g(x) \leq x^{4} \\
\lim _{x \rightarrow 0}\left(-x^{2}\right)=0 \quad \lim _{x \rightarrow 0} x^{4}=0 \\
\lim _{x \rightarrow 0} g(x)=0
\end{gathered}
$$



Suppose $2 x \leq f(x) \leq x^{4}-x^{2}+2$ for all $x$, find

$$
\begin{array}{ll}
\lim _{x \rightarrow 1} f(x) \quad & \lim _{x \rightarrow 1} 2 x=2 \\
& \lim _{x \rightarrow 1}\left(x^{4}-x^{2}+2\right)=2
\end{array}
$$

by S.T. $\quad \lim _{x \rightarrow 1} f(x)=2$
class QZ 6:
Consider the graph

1) $\lim f(x)=3$ of $f(x)$ given below

$$
x \mapsto 2^{-}
$$


2) $\lim _{x \rightarrow 2^{+}} f(x)=1$
3) $\lim _{x \rightarrow 2} f(x)=D_{1} N_{0} E_{.}$
4) $f(a)=2$

